Renewable fuels and chemicals from municipal solid waste

Noppadon Sathitsuksanoh (Tik)

Chemical Engineering
University of Louisville
August 2nd, 2016

Reliance of imported energy represents a significant cost and energy supply risk

Cost of Oil imports (2010)

is equivalent to

\$300 B ≈

2 x Apollo Space Program

Three \$135 B ≈ 5 x Gorges Dam

\$300 B ≈

20 x Channel Tunnel

All costs in US\$₂₀₁₁

Sources: IEA, WhatItCosts.com, Wikipedia, CFO.com Magazine, USInflationCalculator.com

Courtesy of Paul Bryan

MSW can be used to supplement products from crude oil

Municipal solid waste

Crude oil

Background & Experiences Southern Illinois University 2007 2008 2009 2010 2011 2012 2013 2014 2015 **A**dvanced **Electrocatalysis** Lignocellulose **Fuels reforming** Catalytic Ni alloys • JP5/JP8 to H₂ Renewable upgrading of processing

- Electrodeposition
- H₂ for PEMFCs to power radar
- Enzymatic bio-fuel cells
- NMR

transgenic plants

Materials (ARM) Lab

Background & Experiences Southern Illinois University 2007 2008 2009 2010 2011 2012 2013 2014 2015

Electrocatalysis

- Ni alloys
- Electrodeposition

Fuels reforming

- JP5/JP8 to H₂
- H₂ for PEMFCs to power radar

Lignocellulose processing

- Enzymatic bio-fuel cells
- NMR

Catalytic upgrading of transgenic plants

(J. Power Sources (2007) 173: 478)

Background & Experiences

1. 1. - 1

2007 2008

2009

2010

2011

2012

2013

2014

2015

Electrocatalysis

- Ni alloys
- Electrodeposition

Fuels reforming

- JP5/JP8 to H₂
- H₂ for PEMFCs to power radar

Lignocellulose processing

- Enzymatic bio-fuel cells
- NMR

Catalytic upgrading of transgenic plants

Background & Experiences Student Illinois Linvestry 2007 2008 2009 2010 2011 2012 2013 2014 2015

Electrocatalysis

- Ni alloys
- Electrodeposition

Fuels reforming

- JP5/JP8 to H₂
- H₂ for PEMFCs to power radar

Lignocellulose processing

- Enzymatic bio-fuel cells
- NMR

Catalytic upgrading of transgenic plants

OCH HO TO THE TO

Background & Experiences

2007 2008 2009 2010 2011 2012 2013 2014 2015

Electrocatalysis

- Ni alloys
- Electrodeposition

Fuels reforming

- JP5/JP8 to H₂
- H₂ for PEMFCs to power radar

Lignocellulose processing

- Enzymatic bio-fuel cells
- NMR

Catalytic upgrading of lignocellulose

We look at reesources, processes, and economics to find solutions

SUSTAINABLE TECHNOLOGIES

- + Biofuels & Chemicals
- + Polymers
- + Nanomaterials

1st generation biofuels are derived from <u>food</u> crops

1st generation biofuels from <u>food</u> crops drive up the food price

PRO

Easy to be converted

CON

Competitive to food price

2nd generation biofuels from <u>non-food</u> crops are more sustainable and scalable

PRO

Low cost Low carbon Scalable Sustainable

CON

Complex structure
Hard to digest by
enzymes\microbes

Corn stock, husk, and leaves are hard for enzymes to digest and normally left unused

DOE 2016 billion ton study shows that agricultural waste alone cannot meet the fuel demand

DOE 2016 billion ton study shows that agricultural waste alone cannot meet the fuel demand

In 2013, ~70 million tons of paper wastes were generated. They derived from plants

The blend of agricultural waste and paper waste have a great potential to fuel the U.S.

Agricultural waste

Paper waste

Outline

Outline

Unlocking sugars from biomass involves 2 steps: pretreatment and enzymatic hydrolysis

MSW + Corn stover (1:1)

Paper waste is derived from plant. Complex structure makes it difficult to release sugars

Cellulose solvent process breaks tough barrier and unlock sugars

Effect of pretreatments on MSW structures

MSW + CS

ABENGOA BIOENERGY

Effect of pretreatments on lignocellulose structures

MSW + CS

Biomass dissolution can enhance cellulose conversion

Heterogeneity nature of paper makes it difficult to be dissolved and therefore hard to catalyze

Switchgrass~200 µm

The ideal biofuel-producing microorganism would.....

HSQC can be applied in fermentation; it reveals how efficient substrate-microbe interaction is

Collaborators:

- Jana Muller (Calysta Energy)
- Harry Beller (Physical BioSceinces)
- Jay Keasling (UC Berkeley)

Summary

Outline

Tires are currently under-utilized

Pyrolysis of waste tires yields a large amount of aromatic products

Peak	Retention time (RT) [min]	Pyrolysis products of the valve and the car tire rubbers at 700 °C
1	8.20	2-Butene
2	8.55	2-Methyl-1,3-butadiene
3	9.34	3-Methyl-2-pentene (isoprene)
4	9.75	5-Methyl-1,3-cyclopentadiene
5	10.08	Benzene
6	11.28	1-Methyl-1,4-cyclohexadiene
7	11.84	Toluene
8	13.51	Ethylbenzene
9	13.69	p-Xylene
10	14.08	Styrene
11	15.19	m-Ethyltoluene
12	15.52	a-Methylstyrene
13	15.81	1,2,4-Trimethylbenzene (pseudocumene)
14	16.28	1.2.3-Trimethylbenzene (hemimelitene)
15	16.78	Indene
16	17.43	o-Isopropenyltoluene
17	18.02	1,2,4,5-Tetramethylbenzene (durene)
18	18.75	3-Methylindene
19	18.86	2-Methylindene
20	19.58	Naphthalene
21	20.37	Benzothiazole
22	21.83	2-Methylnaphthalene
23	22.17	1-Methylnaphthalene
24	23.43	Biphenyl
25	24.06	Dimethylnaphthalene isomer
26	24.32	Dimethylnaphthalene isomer
27	24.43	Dimethylnaphthalene isomer
28	25.48	3-Methyl-1,1'-biphenyl
29	25.50	2,6-Bis-(1,1-dimethylethyl)-4-methylphenol (BHT)
30	26.52	1,6,7-Trimethylnaphthalene
31	27.75	Fluorene
32	29.88	1,2-Diphenylethylene (stilbene)
33	31.61	Anthracene
34	34.79	2-Phenylnaphthalene

Current efforts in the conversion of waste tires

Currently p-xylene is produced from crude oil

Tires could potentially be a new p-xylene source

MSW will become a new crude oil

Petroleum

Municipal solid waste

Tikgroup.org

'The Stone Age did not end because we ran out of stones; we transitioned to better solutions. The same opportunity lies before us with energy efficiency and clean energy'

-Steven Chu